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FOREWORD

This is the second annual report submitted in accordance with

the provisions of Contract No. 950670, "Investigation of Optimization

of Attitude Control Systems". It summarizes the research activities of

the period September 15, 1965 through June 30, 1966.

This report is in three parts. The first part outlines the pro-
gress during the reporting year. The technical discussions are given
in Parts B and C, in which the conclusions of the results and the plan

of future work are included.
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PART A

GENERAL DISCUSSION

1. INTRODUCTION

This annual report summarizes the results of the research achieved
during the period September 15, 1965 through June 30, 1966. Some of
the material included in this report was presented in the two previous
quarterly progress reports. The repetition makes this annual report
an independent document so that no references to the previous progress

reports are necessary.

2. TECHNICAL PROGRESS

In the design of an sutopilot for a space vehicle which is capeble
of performing the task of soft landing, the problem of optimel control
with bounded phase-coordinate and bounded control is relevant. By
using the necessary and sufficient conditions, the general theory for

linear autonomous systems was developed A method of determining the
optimal‘;m:t;ﬁl ‘Vhlch is a direct application of the theory, was
derived. As an illustration, two particular systems were studied in
detail. The first example deals with the time-optimal control of an
unstable booster with actuator position and rate limits. The results,
when evaluated with numerical data, agree with those that have been
published by other authors using different methods. The second

example considers a flexible vehicle subject to wind disturbances.




This problem is more coampliceted then the first one since the ratio of
actuetor position to its rate pleys an importent role in the extremsl
control lew. The control varieble is found to enter and exit from its
bound aés often as the time dursation permits, which is & natural result
of the oscillatory behavior of the system. In both exasmples the opti-
mal controls are expressed e&s explicit time functions. These results
end their conclusions together with the future reseasrch plen are
presented in Part B.

The optimel control of antenna pointing direction wes investigsted.
The problem is formuleted in such a menner thet the pointing direction
is képt within en accepted region with meximum probehility all the t.ime.
Essentially the controller forces the santenns to point in aﬁdesmifed
direction by minimizing the error rate of trensmission of information
during the entire flight journey of the spece vehicie. 1In the study, &n
assumption of the Merkovian property of the random jittering of the an-
tenne is mede. In eddition, the disturbences in eny two smell -:onsecu-
tive time intervels are assumed to be statistically independent. Thus
the probability distribution satisfies the beckward diffusion equetion,
and the problem reduces to the determination of & controller which
maximizes the probebllity. A computationel scheme based on an
iteration procedure ves develop;;: The technical discussion and the
conclusions of the results, as well as the plan of future work, sere

glven in Part C.

3. PROFESSIONAL CONTRIBUTORS

Professional personnel contributing to the progress during the
reporting year are as follows:

J.Y.5. Luh, Principal Investigator



G.E. O'Connor, Staff Researcher

J.S. Shafran, Staff Researcher
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‘PART B

OPTIMAL CONRTROL IN BOUNDED PHASE-COORDINATE PROCESSES

1. INTRODUCTION

In recent years, mich effort has been epplied to optimel control
problems with bounded phase-coordinetes. Among the published literature,
Gemkrelidze [1.2] treeted the problem besed on Pontryagin's meximim
principle. Berkovitz [3], however. showed that Gemkrelidze's results
can he echieved by solving the relevent celculus of varietions problem.
Dreyfus [4] studied the same problem by meens of the dynamic programming
formulation. His results are in agreement with that of Berkovitz [5].
Among all’ the studies, sufficiency conditions were virtually ignored.
For practical applications, even when solutions do exist, the necessary
conditions derived by the verious suthors are difficult to spply.

For a more restricted class of problems, Cheng derived e sixgpler
necessary condition [6], and the existence theorems based on an exten-
sion of Ascoli's Theorem [7)]. For linear time-optimal control systems
with & convex restraint set, the necessary condition is also sufficient.
An elegant proof of the necessity of the condition can be deduced from
Neustedt's recent work [8] while e rigorous proof of the sufficiency
is given by Russell [9]. This condition is an improvement on
Gamkrelidze's result. It establishes the fact thet the normel vector
appeering in the modified adjoint differentiel equstion is alweys out-
ward with respect to the set of sttainebility, and hence the necessary

and sufficient condition is relatively easy to apply.
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As to the computational aspects of the problem, there are essenti-
ally two classes of methods. One class includes the method of the
gradient, steepest-descent or its equivalent, which vas studied by
Dreyfus [47], Denham [10, 11] and Bryson [12] using the necessary
conditions of the optimal control, and by Peiewonsky, et al. [13) using
conditions both of the optimal control and from the calculus of
variations. The other cless wes discussed by Kahne [14], Ho end Brentani
[15], and Nagota, et al. [16). Because of the nature of the problem,
each computetional procedure requires either an iterative solution or a
simulation on a2 sizable computer. Since &8 new computation is required
for each different initizl state, the possibility of on-line operation
using currently aveilable facilities is out of the question.

An ideal approach is to synthesize a so-called closed-loop optimal
controller so that the control input is a function of the current state.
This problem, however, 1s too difficult to solve. An alternative approach
is to obtain the so-called open-loop optimal control as an expliclt time
function for each initial state. This problem, a2lthough not so difficult
as the ~losed-loop optim=l control problem, is complicated enough that
no published results are known. This report presents a new method of
solving the open-loop control problem with a bounded phase-coordinate.

In the following sections, a discussion of the problem is presented.
Section 2 defines the problem and outlines the background results.
Section 3 discusses the method of solving the problem through a reformula-
tion. The analysis is besed on the necessary and sufficient condition of
the optimel control. The method is then applied to the time-optimml
control of an unstable booster. The complete solution is given in Section k4.
The extremnl control problem for an oscillatory plant is presented in

S8ection 5. The study of this problem is exhaustive since it includes




almost all possible ratios of control amplitude to its rete. Section 6
gives the conclusions of the results vhile Section 7 outlines the plan
of future work.

2. PROBLEM STATEMENT AND BACKGROUND RESULTS

Consider a linear autonamous control process as described by the
differential system
x = Ax + Bu(t) (1)
in R® on the intervel (o,tl]. Aand Baren By n and n by m constant
matrices, respectively. Let G be a closed convex subset of R® and 0
be a non-empty restraint set 1.n.Rm glven by |ui‘ < Cys i=1,2,...,m.
It is further assumed that the system (1) is normel, i.e. the vectors
B, ABv,..., A% 1By are linearly independent where w is & vector having
the direction of an edge of the polyhedron 0. The problem is to choose
an admissible cantrol u{t) € Q on [O,tl] which steers the system (1)
from & given initial state x(0) = x to x(tl) = 0, such that the response
x(t) € ¢ for a1l te [o,r.l] and t; is minimal.
Gamkrelidze [1,2] end others have given necessary conditions that the
extremel controls must satisfy. These necessary conditions imply that
an extremal control corresponds to a solution of a set of edjoint equations .
The adjoint solution is allowed certain jump discontinuities and hence
depends on a number of paremeters representing:
(a) The megnitudes of the possible jumps that appear in the adjoint solu-
tibn, and
(b) The time lengths of the arcs of the corresponding trajectory which
lie on 3G, the boundary of the phase coordinate restraint set G.
The discontinuities are allowed at points where the trajectory (corres-

ponding to an extremal control) enters upon or exits from an arc on 3G.




These are the general results. They do not, however, indicate
specifically at which points the trajectory emters upon the arc, and
vhen the trajectory must exit from it. This peper attempts to investi-
gate these questions. In the following section, a reformulation of the
problem is introduced which will lead to a method that determines extre-
mal controls as explicit time functions. Then these functions can be
represented in terms of adjoint solutions. A sufficiency condition given

by Russell [9] shows that the solutions so obtained are optimal controls.

3. REFORMULATION OF MM
For & linear autonomous process, the calculation of trajectories
by the "backing out of the target" procedure is valid. To reverse the
time sense, define T = t, - tand T ¢ [O,tl]. Then the system (1)
becomes
ax/dr = -Ax - Bu(T), (2)
with initiel condition x(1) = 0 at T= 0. Let

K(7) = {x(n)Ix(v) = [ eA(™2) 3 u(s) as, x(7) < 6 for en1 e [0,1,],

u(s) € Q for all se [0,1]}
be a set of attainability at 1, then K(7) is the set of all points that
can be attained in time Tt from x(0) = O using admissible controls.

If Tt is small enough then K(T) is within the interior of G, and it
is known that K(7) is compact, convex, and continuous in T. Moreover,
the trensversality condition applies at 3K(T), the boundary of K(T);
and for each point on 3K(t), there is a corresponding unique and
admissible extremel control [ 17 J.

When T is large, some segments of 3K(T) may coincide with 3G. Since

G 18 convex by hypothesis, then K(t) is again convex; and Russell



[9, pp. 22-53] showed that:

(a) at 3K(t), the trensversality condition is sﬁll valid if the
corresponding adjoint system is modified, and

(b) corresponding to each point on 3K(t), there is a unigue admissible
extremsl control.
Thus, by (a), for every unit vector T in R there is a state vector

x corresponding to a point on 3K(t) for a fixed T such that the projection
P of x onto 1|:

P=(M,x)=-I1" X5 5u(s) as
is a maximum, where ()' = transpose of (), and u(s) € Q for all se [0,t].
By (2) and (b), the corresponding unique admissible extremal control
u*(s), vhich maximizes P, steers the linear, autonomous, normel system
(2) from the origin to the furthest point x in the direction 1| in a
fixed time T.

This is equivalent to the cese that, with the time sense reversed
once more, the same extremel control will steer the system fram x to the
origin in & fixed time T vhere T is minimal. Russell's sufficiency condi-
tion [9] shows that the unit vector 7 is the adjoint vector at time T,
and the extremal control so obtained is the time-optimal control.

" Thus, the problem of determining a time-optimal controller is now
reduced to obtaining en admissible extremal control that maximizes the
projection P of a state vector x at a fixed time T (in the sense of
"becking out of the target") onto a unit vector 1. In so doing, it is
possible to find an extremcl control for every fixed finite time T and
for every unit vector T, end hence to express the extremel controls as
explicit time functions. Once this 1s completed, the state vector
% = x(7) can be :omputed from the variation of perameters formule with

the corresponding extremzl control.



The domain of controllebility of the system can be determined by
considering the limit of x(T) as T approaches infinity. If all the com-
ponents of x(t) approach + ® as T approaches ® then the domein of control-
lability 1s the entire state space. If some components of x(T) approach
finite limiting values, the domein of controllability is a proper subset
of the state space, and the boundary of this damsin can be determined

from the limits of x(T1).

4. THE URSTABLE BOOSTER CONTROL PROELEM

Friedland [18] and Toohey 19] have studied the optimel autopilot
design problem of an unstable booster with zctustor position and rate
limits. Their simplified plant transfer function consists of three
poles in the frequency domain: one at the origin and two on the reel
axls with equel magnitude but opposite signs. They simplified the problem
further by cancelling the pole at the origin through physical design.

Essentially the simplified and normalized unstable booster is described

ITT-% & |
by 2 second order differcntial equation

- x = u(t)
or, in metrix notation
. s PS
=A%+ 0bu(t) (3)
in R® with
a 01l - 0
i = xl = fl » A = s 'b = .
xz ey 10 1

The problem 1s: (for & fixed value of u(0) which satisfies |u(0)] <1)
(2) To determine the damein of controllability (in Rz) in which every
point can be steered to the origin by & scalar control u(t) subject

to the constreints {u(t)] < 1 anda |u(t)] < D on [0,=), and
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(b) To find a time-optimal control function for each initial state in
the domain of controllability.
This problem will be formulated as 2 bounded phase-coordinate pro-

blem and solved by the method described above.

k.1 Bounded Phsse-Coordinate Formulation of the Booster Problem

The system is augmented by defining x3(t) = u(t) and v(t) = a(t).

Then the system (3) can be rewritten as

X = Ax + b v(t) (&)
vhere
x1 _xl 010 0
x= x| =|x , A=J101] ,v=]0
X3 u(t) 000 1

[ 5%

This is 2 bounded phese-coordinate problem (in the sen;e |x3| = |ul <1)
in which the scalar variable v(t) is required, subject to the constraint
[v(t)] <Don [O,tl], to steer system (4) from an initisl state x(0) = X,
to x(tl) = 0 vith minimal t,.
To proceed by the method of "backing out of the target x = O" we
write the system (4) with time sense reversed (by defining T = -t),
dx/at = -A x(1) - b v(7) (5)
with x(0) = 0. By the variation of peremeters formula, the system (5)

hes & solution S _

j: [1 - cosh (1-8)] v(s)ds
x(t) = f; sinh (t-s8) v(s)ds (6)

-J’; v(s)
- ds

vhere |v(s)| < D is admissible on [0,7]. The adjoint system for the
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system (5) is

ay/ax = - (-A)" §(7) = A"4(7)

Gemkrelidze 1,2] showed that, in order to represent the extremal v as a

multiple of the signum of an adjoint solution for the bounded phase-

coordinate control problem, the adjoint system must be modified. 'Thus

a "totel adjoint vector” p(t) must satisfy the relation

A’ p(7), 1£ !x3(1')| <1

dp/dt = (7)

B pr), 1f |x5(1)| =1

010

in whichA ={1 00

000

In so doing, the necessary conditions for v to be extremal can be

expressed as
v(1) = D sgn Mp(7)’ (-b)]
or -v(7) = D sgn [p,(7)] (8)
where:
(2) p{7) satisfies the system (7),

(c)

(a)

py(v) = 0 1f |x(7)] = 1,
p(t) is allowed certain jump discontinuities at endpoints of intervals
vhere |x3(r)| = 1 (for this problem, p, and p, are required to be
continuous and jumps can occur only in p3 since only x3 is restreined),
and

+1, if p3 >0

8gn p; =4 0, 1f p; = 0 (9)
‘-1, ir p3 <0

Thus, the solution of the system (7) can be written as

pl(‘r) = pl(O) cosh T + PZ(O) sinh T,



pz(f) = pl(o) sinh T + pz(b) cosh t, (10)

p,(0) cosh 7 + p,(0) sinh 7 + K, if |x3(:)| <1,

) =
ST | 1t a0l - 2,

wvhere the value of the constant k in p3(1) depends upon the intervel in
which lx3(1)| < 1, and upon pl(o) and pz(o).

4.2 'The Extremel Controls

To determine extremal controls as explicit time functions, form
the projection P as defined previously. Let the unit adjoint vector at
time T be

cos 8 cos @
M= sin 6 cos # , el < x, 2] < x/2.
sin ¢
Then, by equations (6) and the definition of P,
P=[7 als; 7, 6, §) v(s) as
in which
g(s; 1, 6, #) = cos ¢ [cos 6 - cos 6 cosh (1-8) + sin 6 sinh (7-8)]
- sin g, (11)
and |v(s)! < D is admissivle on [0,7). By the trensversality conditiom
at x(t) on K(7), v(s) is extremal on [0,1] if 1t meximizes P. By
equation (8), the only possible values for v(s) are + D and zero. When
‘x3‘ < 1, the system (4) is normal and hence the value of v can only be
either + D or -D. If v is zero on an interval then by equations (8), (9)
and (10) the value of ‘x3! is one. This conclusion is in agreement with
Cheng's statement [20] thet if the system is time-optimelly controlled,

then either u is extremal or du/dt is extremal.
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The function g(s; T, 6, #) given by equation (11) has the property
that
gls; 7, 6, #) = -g(s; 7, n + 8, - #);
hence it suffices to consider only half of the range of 6. For conveni-

ence, choose -x < 6 < 0. Then P may be written as

P = cos ¢ [} #(s5 7, 0, §) [-v(s)] as
where

f(s; 7, 8, g) = cos 6 cosh (1-s) - cos 6 - sin @ sinh (T-s5) + tz(m?
12

To determine the form of the extremal v(s) that maximizes P, the
method given by Schmaedeke and Russell [21] can be used. Por this perti-
cular problem, however, v(s) can be obtained by inspection fram geametrical
reasoning. On the intervel 0 < s < 7 the function £(s; 7, 6, #) is either
monotone or has one meximum and no minime. In fact, for 0 < s < T ahd
lol < n/2 there are two cases of imterest. These are: (a) -3x/4b <0 <0
and (b) -x < 8 < -3n/h.

In the case (2) the derivative df/ds < O so that f is monotome

decreasing in s.

In the case (b) £ has a maximum at s, = T-tanh™t (tan 6). However

for tan-l(tanh T) < 6 < -3n/4 where tan'l(tanh t) > -x the value of

8 is negative.

Thus, for |@] < n/2 and 0 < s < v < ®, £ 1s monotone decressing in s if
-x < tan-l(tanh T) < 6 <0; or £ has a maximum at 8, =T- tanh'l(tan 0)
1If -x <0< tan~t (tanh 1) < -3x/k. Furthermore, for any real k,

f(sm +k;1,0,8)-= f(sm -k; 1, 6, §f) if -x < 6 < -3x/h,

hence f is symmetric with respect to 8y Therefore, for a fixed 7, a

fixed 6 and a fixed @, f(s; T, 6, #) can be sketched on the interval




1k

0< s <7t. Two typicel cases are shown below, one corrésponds to f
being monotone decreasing in s and the other to f having & maximm
et some 8_ > O.
n
In the case shown in Fig. 1, the ranges are -3x/k < 6 < 0 and

1/D< < 3/D; hence £ is monotone decreassing in s. The form of extremel

v(s) is |
D for 0 <s <1/D
-v(s) = it x/2>g> #y; (13)
Oforl/D<s<T _
or
D for 0<s <1/D
-v(8) = Efor 1/_1;f 8 <1 - 1ln (o+8) irg >g> ¢2;(11&)
-D for T - 1n (a+B) <s <7
or
D for 0 < s <t - 1n (a+8)
-v(.)={ 11 9,2 9> 9, ;(15)
-D for 7 - 1n (a+8) < s <7
or
/ Droro<s<(r- l,"D),"._\
-v(s) - ) 1 9, > 9 > -x/2; (16)
D for (t - 1/D)/2<s <t 3=
where
gy =0
g, = -tan'l{cos 6lcosh (1-1/D) - 1] - sin @ sinh (71-1/D)},
¢3 = —tan Y{cos 6lcosh (1/2-1/2D) - 1] - sin @ sinh (t/2-1/2D)},
a = (cos 8 - tan g#)/(cos 6 - sin 6), end
B = ,v,—a—zi(cos 6 + sin 6)/(cos 6 - sin 6).

By an inspection of the sketches in Fig. 1 with the besic requirement in

mind that either |v(s)| = D or |u(s)| = 1 on the entire intervel 0 <s <1,
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it is easy to show that any deviation from the v(s) given above would

decrease the value of P.

For the case shown in Fig. 2, the ranges are
-x < tan™! (tanh 5/2D) < 6 < tan™* (tamh 3/D) < -3x/b
and »
tanh™) (tan 8) + 1/2D < 1 < & tanh™ (tan 6) -7/D;
hence f has a maximm at 5 = T - tanh™t (tan 6). The form of the extre-
mal v(s) is
-Dfor 0<s< (2’m - 1/D)/3
-v(s) = < D for (2s, - 1/D)/3< s < (Lusll + 1/D)/3p it x/2 > g > g
0 for (ks + 1/D)/3<s<T

or
/-_D:t‘or058<(28m-l/D)/3 \
o) od D for (28, - 1/D)/3< s < (ks + 1/D)/3|1f &, > &> @ ;
7Y 0 for (bs, + 1/D)/3< 8 < T - 1n (o + BY
-Dfort-1In{o+8)<ac<
\J =8=7 D
or

(D for 0 < s < (2s_ - 1/D)/3
D for (2s - 1/D)/3< s < (us;m + 1/D)/3 |1f @), > # > -x/2;

T o gy g e < x - @)

\-D for T - (2/D) <s<
vhere g = ~tan™t {cos 6 [cosh 2/D - 1] - sin 6 sinh 2/D}, and all other
parameters were defined previously. By an inspection of Fig. 2 with the

same argument given in the previous case, the extremal v(s) must have the

present form.
This procedure was carried out for all the possible cases. It was

found that the extremal v(s) reaches zero and leaves zero as many as four
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times. Denote the time s at which such events occur by *1’ i=1,...,4,

and let T, = O and Tg= T Supposing the values of x3(s) = u(s) are such

that
lu(s)| <1, ir Ty S8<Ty 15 10,1, 2;
Then

dp3/d.s = dv3/ds for T,y <8< T, L1, 1=0,1,2;

p3(s)-0 for123+153<123+2; j=0,

It follows that choosing p.(s) to be continuocus at <
3

1.

21 + 1° (1 = 0’1’2)

requires P3(121 . l) = 0, and hence

p3(s) = t3(s) - ¢3(1’21 + 1) for 1,, <8< T, ., 1=0,1, 2.
With p3(s) go defined, the Jump conditions have to be satisfied at Toyo
1=0,1, 2. Since 1| 18 the unit adjoint vector at 3K(T), p3(1') = ¢3(1') =
= 1']3 = gin g.
Thus
(cos 6 [cosh (7-8) - cosh (7-7,)]-sinh 6[sinh (v-s)-sinh (7-7,)],
1£0<8 <,

0, if1, <s<=7

1 2’

B NCHIAN) =< cos 6 [cosh (t-8) - cosh (1-13)]-3111 6(sinh (t-8)-sinh (1-13)],
cos @

if Ta <8< 1'3,

0, ir 1’3 <8< T

cos 6 [cosh (1-8) - 1)-sin 6 sinh (1-8) + tan ¢ + & (tan g - teng),

2

k £t <s<-,
where

0, 1 x| = lu(n)] <2

1, if |x3('t)\ = lu(7)| =2
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Using this expression for p3(s;r,92¢),1t has at most one jump disconti-
nuitity 2t 8 = T (equivalently at 3K(t) ), and this happens only when
!x3(t)‘ = |u(t)! = 1. Furthermore, the explicit form of the extremcl v(s)

can be expressed as

-v(s)

D sgn [ps(s; 7, 6, 2)]
= D sgn [p3(ss T, 68, @/cos #)
since cos @ is positive on -x/2 < g < x/2. Finally, by Russell's suffi-
ciency comlition [9], the extremel v(s) is ulso the time-optimel v(s).
The function p3(s; T, 6, @) for the two typlcal cases discussed
previously are also sketched in Figs. 1 and 2. The formulas for pora-

meters 1., i=1,...,4, & and g, are obtained for all possible ceses in the

i’
ranges -x € 8 < 0, -n/2 < # < x/2 end 0 < T < ®. The results are listed

in Tables I to VI.

4.3 Time-optimel Controls for the Booster

The state vector x(T) can be readily computed from equations
(6). Take a typlcsl case as an example:

-3x/4 < 6 <0, 1/D < 7 < 3/, g, <B< g (see Fig. 1).
For this case, the extremsl v(s) is given in equation (14), hence by

integration over [0,t],

xl(r) = D sinh (1/D-1) + D sinh 7-1 + DIn (a + B8) - fa + g - 1/(a+p)ID/2

.xz('r) = D cosh (1-1/D) - D cosh =-D + [a + B - 1/(o+g)] D/2
x3(-r)-1-nln(a+c).
Leta+ g = el/D so that x3(1) = u(t) = 0, then
xl('r) = D sinh (1/D - t) + ginh t - sinh 1/D)
x,(7) = D fcosh (7 - 1/D) - cosh 7 .- 1 + sinh 1/D]

for 1/D < T < 1/D. A further choice of T = 2.5/D reduces the above to
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(%,(2.5/D) = D~ sinh (1.5/D) + sinh (2.5/D) - stan (1/D)]

4:2(2.5/1)) = Dlcosh (1.5/D) - cosh (2.5/D) - 1 + sinh (1/D)]

Q(z.s/n) =0
Using the results so obtained to solve the original booster problem
stated in equation (3), reverse the time sense once again. Thus the
extremsl v(s) now starts from s = T and backs aup to 8 = 0. Since T = -7,
it follows that equation (14) is now replaced by
Dfort>8>t-1/D
-v(s) O for t -1/D>s>1n (a+ B)
-Dforln(a-l-B)Zs?_O
Since dx3/dt = v(t) in equation (4) replaces dx3/d'r = -v(t) in equation
(5), hence x3=u (shown in Fig. 1) now reverses its sign. Thus, the
above example (now t = 2.5/D instead) can be interpreted as follows:
The control
D8, if 2.5/D> & > 1.5/D
u(s) =¢ -1, 1£ 1.5/D> 8 > 1/D ‘
%, 1f 1/D>s > 0
will steer the original booster control system (3) from the initial state

x,(0) = D [-sinh (1.5/D) + sinh (2.5/D)- sinh (1/D)]

x,(0) = D lcosh (1.5/D) - cosh (2.5/D) - 1 + sinh (1/D)]
with u(0) = O ta the origin in the minimum time tl = 2.5/D and u(2.5/D) = 0.
This example also illustrates the fact that the paremeters 6 and ¢
introduced in the edjoint vector 7| serve as an aild to derive the extremal
v(s) only; they disappear in the final solution of the time-optimal control

problem.

4.4 Maximum Controllable Region

The maximum controllable region is determined by examining the



values of x(t) as t = », Among the total of twenty different cases for
large T in Tables I - VI, the boundary of the region for u = 1 can be
determined from the cases of (a) x/2 > g > 2. 3/D< 1 < ® in Table I,
and (b) n/2 > g > Bys 3/D < T < ® in Table VI as follows:

(a) By equations (6), this case ylelds

xl(r)=nsinh(1/n--r)+nsinhr-1

xz('r) = D cosh (t - 1/D) - D cosh 1

x =
3(1) 1
xl + 1
Thus ——-—xz = -1 as T —* ® which gives the equation

xl+x2=-lforu=1 (17)
(b) This case yields
xl('r) = -D sinh (1/D - ) -D sinh T + 1 + D sinh (2/D) -2

X,(t) = -D cosh (1 - 1/D) + D cosh 7 + D - D cosh (2/D)

x3(t)=-1+2=1

X, +1-Dsinh (2/D)
Thus xz-ﬁffcosh(ﬂf)'“'l“"“c'

or X, +X,=-1+D (1 - exp(-2/D)]) for u=1 (18)

The boundary of the region for u = -1 can be obtained from other cases,
such as the case of ¢ > ¢ > -x/2, 3/D < T < ® in Table I. However, since
gls; v, 6, #) = g(s; v, x+ 6, x - ), (19)
known relations will hold if all the signs of x), X, and u( = x3) are
changed simulteneously. Therefore, corresponding to equations (17) and
(18), the boundary for u = -1 is given by

-x -x= -1 for u = -1 (20)

-x -x=-1+D[1- exp(-2/D)] foru=-1 (21)
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The boundary of the region for -1 < u €1 can be found from the case

of g, >8> @, 3/D < 1 < ® in Table I, which ylelds

(x,(%) = D sth (1/D-7) + D stuh « + D1/(a+)-(a*8))/2 + Din (0+8)-x,(7)
ﬁxz('r) = D cosh (1-1/D) - D sinh 7 - D + DI1/(c#B) - (a+B)]/2
@1) = 1 - Dln(c+B)

Since u = Xy and a + 8 = exp (1 - u)/D], the limit as 1 = = ylelds -

xl+x2=-u-D{1-expr- (1-2)/D]} for u=1 - D 1n (a + B) (22)

which reduces to equation (17) if u = 1, end to (21) 1f u = -1. By the
property of equation (19) and the same argument, the other boundary equa-
tion for -1 < u < 1 can be deduced from (22) as

“Xy - X, =1 - D{1 - exp’-(1 4+ u)/D]} for -u=1 - D 1n (a+B). (23)

Equation (23) reduces to (18) if u = 1, and to (20) if u = -1. Conseguently,
equations (22) znd (23) determine the maximum controlleble region (Fig. 3)
for -1 < u < 1. Fig. 4 shows the reglons for 1/D = 0.709, which egree

with those¥* given in Friedland's paper F18] when z scale factor of 2.799

for the v onA
Ier T X, &na

, end %, ex
THE OSCILLATORY SPACE VEHICLE PROBLEM

In the design of on cutopilot for & large flexible spece vehicle
the problem of bending moments relsted to the wind disturbznces is of
relative importence. When the motion-controlling @éctustor has saturstion
Limits on both position znd rcte, the design problem is quite involved.
As © rule, the antopilot shoald be capatle of moneuvering the actuator

in ¢ most efficient menner vhile encountering the worst wind disturbence.

¥ 1In ¢ private cammunicetion with Dr. B. Friedlsnd of General Precisiog,
Inc., Little Fells, New Jersey, ve agreed that in Fig. 6 of his peper 718],
the scale of the q, -¢ xis should cerry negative signs.



-{1=u)
0= - u-D[i-e D

=~ o+ p[j-g TL2Y]

For —I1SusS|

FIGURE 3

FIGURE 4
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Therefore, an initial investigation is the detemimtiox; of the worst
disturbance that can be handled by the available actuator in e fixed
time interval. The control inputs generated by the actustor to serve
this purpose are called extremel inputs.

5.1 Problem Formulation

When the angle of attack is smmll, the longlitudinal motion of the
vehicle can be described by a system of linear differential equations.
It is assumed that (a) a pole of the plant trensfer function at the
origin in the frequency domain is cancelled by means of same compensating
device, and (b) the damping is neglibible, and the plant transfer
function is essentially dominated by a pair of almost purely imaginary
poles. Thus the approximate vehicle can be represented by & second order
undemped oscillatory system. This approximetion is allowed for meny
flexible vehicle systems. For the convenience of analysis, the control
variabie is treated as an augmented-system state variable, and the

equation of motion is normalized as follows:

ax/at = x{t) = ax(t) + bo{t) m O <t < (24)
where _
x :.:1 ) 010 0
X = 5 = xl s V=4, A= -1 0 1 ) b = 0 »
xg u(t) 0 0O 1

x, = normalized plant position, u(t) = normalized thrust deflection with
|ul <1, v(t) = normelized thrust deflection rate with |v| < x/k. The
value of k is greater than or equal to 2, which allows the extremal
control to enter upon and exit from its bound once every half cycle of
the oscilletion. The tixree-dimensioml coordinate system is so chosen
that the origin is an equilibrium state. It 18 required to determine an

extremal v(t) which steers the system (24) from the origin to a furthest
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point x in a2 given direction in a fixed time t. This 1s again a bounded
phase-coordinate control problem and all known results on this type of
problem apply.

By the same argument, which wes based on Gamkrelidze's [1,2] result,

the "total adjoint vector" p{t) must satisfy the relation

-A' p(t) , 1if !x3! <1,

GJ
~
]

A pt), 1 x| -1,

where ()' = transpose of () and

- 01090
A= -1 0 O .
0 00
Thus
w(t) = 3 sgn [o(t)' b ]
=l-:ssn[p3(t)]
in which

0
| +1, 1if p3 > 0,
sgn P3 = 0, 1r P3 =0,
-1 1ir p3 < 0.
Furthermore, p3 is allowed certain jump discontinuities at endpoints of
intervels where ‘x3| = 1; and p3 = O vhenever '13' = 1.

5.2 The Extremm] Controls
Let K(t) = (x(t)]x(t) = [¥ A7) w(o) as, |5l <1, Iv] < /)

be a set of attainability at time t. The trensversality condition implies
that for every unit vector 7 in R3 there is a state vector x corresponding
to a point on the boundary of K(t) for a fixed t such that the projection,
P, of x onto 1| 1s a meximum. Moreover, the corresponding unique admissible

extremal v(s), which maximizes P, steers the system (zh) from the origin
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to the furthest point x in the direction T in a fixed time t. Russell's
sufficiency condition [9] shows that 7 is the adjoint vector at time t,

and v is the minimel-time control.

Let
cos 86 cos
n= sin 0 cos ¢ ’ |9| <=, ‘¢| < “/2)
sin g
then

P=cos¢f§ [cos 6 - cos(t + 8 - 8) + tan #] v(s) as

The extremal v vhich meximizes P cen be determined by inspection for
every fixed 6, ¢ and t. Since P(s; t, 0, #) = -P(8; t, x + 6, - &),
it suffices to consider only half of the range of 6. Figure 5 shows
e typical case of k = 2.5, 3x/5 < 6 < bxn/5, with 11x/5 < t + 6 < 1kx/5.
The form of extremal v(s) is
(a) for /2> g > tan™} [coe(6x/5 — 6) - cos 6] >0
/-2.5/1t, if 0 <s <2(t +6)/3 - 22x/15 = 8,

-2.5/x, if 8, <8< 4(t + 0)/3 - 38x/15 = T

-v(e) = 0, if <s<1;.lm/5=-r2

1l

2.5/n, if v, <s < t,

2
or
(v) for tant [cos(6x/5 - 0) - cos 6] > @

> -tan'l[cos 8 - cos ((2x + 6)/3)]

ﬁ.s/n, 1f 0<s<2(te+ 0)/3- 221/15 8y

<8< it +06)/3-38/15=1

|

-2.5/xn, 1if 8,

-v(8) = < 0, 1f 7, <8<t + 6+ cos ™" [cos 6 + tan g] - 2x

-2.5/n, it 8

o

2<s<t_,

2.5/x, 1£ T, <8<t + 6 - cos™  [cos 6+ tan gl = &

T2

2
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or
(¢) for -hn'l[cos 6 - cos ((2n &+ 6)/31> g > -x/2

/2_.5/:, 1 0<s < 2(t+6)/3-22x/15 = 8y

-2.5/x, 1f 8, <8< L(t + 6)/3 - 38x/15= 1,
-v(s) =< 0,1f 1, <8<t -4{x=-0)/3=71,
2.5/x, it T,<8<t- 2(x - 0)/3 = 8,

&5/:, ifs, <8 <t.

The same procedure was carried out for all possible reanges of O and
t. It ves found that, in genersl, the extremal v(s) reaches zero and
leaves zero as often as the length of t permits. Denote the time at

which such events occur by Ty i-1, 2, ..., 2N, and let T = 0, Top1= b

Furthermore, let

lx‘3(s)] <1, 1f 1, <8< Ty ., 10, 1, ..., K;
and
Then

dp3/ds = d¢3/ds for T,y <8< T, 4, 1=0, ..., K;
and

p3(s) = 0 for 1’2315 s < o2 =9, ..., N-1;
where ¢3 18 a camponent of ¥ satisfying dy/ds = -A ‘4. As indicated in

Section 4.2, choosing p3(s) = ¢3(s) - for 1,, <s<T

¥5(72549) 21
1=0, ..., N, ylelds p.(s) being zero and continuous at <
’ 3

21+1’

24+1? and

consequently the jump conditions must be satisfied &t Togs 1=0, ..., N-1.

Since T is the unit adjoint vector at time t, p3(t) = 03(t) = T|3 = sin g.
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Therefore
cos(t-121+106)-cos(t-306), if 7, <8< T, 0,
P3(5;t:9)¢)
cos B = 90 Ty S8 < T
cos 6 - cos(t46-8) + tan @ + 5(tan g, -tan d),
ifr Ton <8<t
where

1=0, 1, ..., N-1,

0, if ‘_13(1:)‘ lu(t)] <1

la(t)| =1,

1, if lx3(t)|
and
ﬂo = direction limit for T at which p3 has a jump discontinulty
(ﬁo is a resl number). Thus p3(s; t, 6, #) has at most one jump
discontinuity at s = t which heppens only when |x3(t)| = 1. The explicit

form of extremel v(s) cen now be expressed es

v(s)

3 sen [ py(s; ¢, 6, 9)/cos 0]

3 sen [ py(s; ¢, 0, 9)]

In Figure 5, the function p3 for the typical case is also sketched.

The formulas for peremeters t,, 1=1, 2, ..., 2N, 5, and ¢o are determined

i
for all possible choices of k > 2, 0< ¢ <x, |¢] < x/2, ana O <t<e,
All the results are tabulated in Tebles VII and VIII. To use these tables,
first locate the Case Number from Tables VII for the appropriate ranges of
k, t and 6. Then on TablesVIII, for every Case Number and every range

of g, a set of paremeters of 1., i-1, 2, ..., 2N, 8, and ¢° are given.

12
6. CONCLUSIONS

The analysis presented in this report is a direct application of the
optimal control theory. The scheme, vhich is besed an the necessary and

sufficient conditions of the optimel control with bounded phase-coordinate
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mekes it possible to express the control as an explicit time functiom.
In the example of the unstable booster control problem, the results

are tabulated and sketched for a camparison with those in the pudblished
literature (18, 19]. The investigation of the oscillatory space vehicle
reveals the structure of the extremsl control variable, which oscillates
in accordance with the oscillation of the controlled vehicle.

7. PLAN OF FUTURE WORK

The immediate step will be a study of an underdamped oscillatory
plent with bounded amplitude and rate control. The investigation will
Yield the nature of the time-optimel control function for e process with
e pair of complex conjugate charscteristic roots.

At this point, the reseerch can be divided into three parallel paths:
(e) extend the study to the same processes but with integrel quadretic
cost criteria, (b) independently simulate the same problems on & computer
and compare the data so obtained ageinst those from analytical results,
and (c) study the same time-optimel control problems analytically except

~—ad o B
thet one of the state variab

les be slso bounded {so far the bound is only
applied to the augmented state varisble, viz. u = x3). Gamkrelidze's
[1,2] necessary conditions imply that the adjoint solution has certain
Jump discontinuities. However, his results do not indicate how many
discontinuities will occur. So far in 21l our investigations, only

one bounded stete veriable is involved. The results indicate that there
is at most one discontinuity which cen be erranged at either the beginning
or the end of the time intervel. It is therefore conjectured that the
number of Jjump discontinuities in the adjoint solution is the seme as

the number of bounded state variables. This conjecture remains to be

shown in the above study (part (c)).

Next, the investigation of a bounded phase-coordinate problem having




hs

one reel end a peir of complex conjugate characteristic roots will be
started. It is intended to develop an algorithm for the time-optimal
control problem first, and then an algorithm for the problems with inte-
grel quedratic cost criteria. These algorithms will be programmed on a
camputer, and the results evaluated.

The simulation will again be carried out in the following order:
(2) construct analog simuletion of plant end controllers, (b) develop
block diagrems of controllers suiteble for future mechanization,
(c) develop simulation, snalog and/or digital, suitable for testing of

practicel control systems, (d) compere with the results from anelytical

expressions, and (e) test verious ideas for simplifying and epproximeting

the controller.

Finally, the same steps of investigation will be applieﬁ to the same
class of control problems for linear time-varylng processes. If dats
are available for prectical systems, these systems will first be approx-
imated by third-order systems, then camputed and simulated by the methods
developed in this research. A careful check of these results will

determine the reletive merit of this research.

[P



PART C
OPTIMAL CONTROL OF ANTENNA POINTING
DIRECTION SUBJECT TO RANDOM DISTURBANCE

1. INTRODUCTION

After the terget is located, the genersl control problem for the
antenns pointing system is the problem of direction lock-in. For the
antenna system which is mounted on & space vehicle, the effect ceused by
random disturbences is significent. Basically, the purpose of the entenna
system is the transmission of informetion. Since the error rete or trans-
mission is directly related to the direction pointing error, the controller
should l;e designed to minimize the error rate. Graphicaelly, & typlcal
relation between the error rate and the pointing error is sketched in
Figure 6. The measure of performence of the controller is arbitrerily
classified into four zones, viz., good performnce,' fair performence,
transition, and poor performence. The corresponding zones for pointing
| angle in the coordinete system of pointing direction is shown in Figure 7. -
With the meesure of performence so defined, the controller is assigned to
operate in two modes as follows: |
Mode 1--Mode 1 is initiated by the entry of the pointing angle into the

good performence zone. In Mode 1, the controller generates &
control input which minimizes the probebility of entering the
trensition zone at eny instant during same fixed time interval Tl'
Mode 1 is terminated by the entry into the poor performence zone.

Mode 2--Mode 2 18 in effect whenever Mode 1 is not.
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In Mode 2 the controller 'genente- @ control input which mexi-
miges the probability of entering the good performence zome st
some instent during scme fixed time intervel '!z.

Thus the optimirzstion procedure can be carried out in two seperate

perts:
(e) Determine the time intervels T, end Ty, end the redii r;, T,

and Ty of boundary circles of the four zones (see Figure 7) by mini-

,epd r,_.

mizing the error rate with respect to '1'1 and Tz, and to r,, T 3

2

(b) In each mode of operation, determine the control input that
minimizes (or meximizes) the appropriate yrobability.

Part (b) is defined as the optimsl control problem of the antenna
pointing direction. An amelysis of this problem, wvhich is a direct appli-
cation of the results by Pontryagin and Mishchenko [1], is presented in
the following sections. In the enalysis, the rendom disturbences in eny
two smell consecutive time intervals are assumed statistically independent
and hence the response is & Markov process [22). The probability distribu-
tion, therefore, satisfies the Kolmogorov's backward equation. The
derivation of the general form of the equation is included in the Section
2, vhich also ierves the purpose of review. Section 3 outlines the Mish-
chenko's pursuit problem [1]. The msterial is not new but an edited sum-
mary of Mishchenko's work. It is intended to help the reader to under-
stand the problem, as well as the method of solving the problem. Section
4 gives the problem statement. The procedure of investigation is arrsnged
in such & menner that the method used in the pursuit problem can be applied
provided certeain conditions are met. The technicel development and dis-
cussion on the antenna pointing direction and the height of vehicle con-
trol problem sre given in Section S5 and the camclusion of the investigation

in Section 6. The flow charts of computer programs for evaluating surface
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integrals and solving Fredholm equation of the second kind are included

in the Appendix. Section 7 outlines the plen of future work.

2. GENERAL FORM OF KOLMOGOROV'S BACKWARD EQUATION

In thie section the genersl form of Kolmogorov's backwerd equetion
and its derivation &re discussed. The purpose of this section is to
ontline the essentisl properties of rendom processes thet ere governed
by the equation. With =dditionel conditions imposed on the random dis-
turbznces, the genersl form reduces to the familier backward diffusion
equse tion.

Consider the process whose dynemics zre described by the differ-
ential system

dx = £(x,t) dt + an (25)
where x and n ere the m-dimension=l state end disturbance vectors, res-
pectively; f(x,t) is assumed differentieble with respect to both x and t
almost everywhere. In & small time interval 5t, the change of state can
be written as 122)

5x = f£(x,t) 5t + 5n + 2(5%) (26)

in which 2(5t) is such thet 1im Qé%i) = 0. It is assumed that the
5t=0

disturbences Bln and an in any two smell consecutive time intervals

Byt end 5,t ere statistically independent. Let &n = Tot, fhen the
essumption is equivalent to the condition that the T-process has inde-
pendent increments. Intulitively the x-process ig Markovien since the
5x is affected by the value of x at the end of the previous time inter-
vel but not the value 2t any instant prior to thet end point. For
linear systems, the necessary condition for X-process being Markovian

is given in the following theorem.
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Theorem 1

Consider the linear process in which the variation of the state in
& smell time intervel is

8x = A(t) x 5t + c(t) T(t) 5t + O(Bt) (27)

vhere A(t) and C(t) are measureble metrices on [to,tl] with eppropriate
dimensions. If the x-process 1s Markovian then the disturbance Tl-process
has independent increments.

The proof is sketched as follows*. Let X(t,t) be en n by n matrix

setisfying the relstions

a
T X(t,to) = A(t) X(t,to) for ¢, >t > ¢t .

X(t,b ) = 1

where I is en identity metrix. Then

t
x(t) = X(t,to) x(to) + Jt X(t,7) c(t)W(7) ar (28)
o]

from which the covaeriance metrix of the x-process &t & sequence of time
instents can be computed. By applying Doob's theorem on Markov process
in the wide sense {23, Theorem 8.1, p. 233), the Theorem 1 cen thus be
proved.

Let & (1v) = E[e'"'™]

be the cherscteristic function of n vwhere v is &n arbitrary vector heving the

same dimension as that of n, E denotes the expection value &and ()' = trans-
pose of (). Let F = F(x,t,1v,bn) be a functionsl setisfying S an(iv),

then F is called a disturbence functionsl.

* The proof is suggested by Dr. Glenn E. Bexter, Professor of Mathematical
Sciences and Stetistics, Purdue University.
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Lemme 1

The disturbence functionel is additive if* the noise hes independent

increments.
Proof [22]
iv/ £5.n
QXB n(:W) =Ee k
k
4
<N E eiv Skn
k
-1 eSt Fk
k
_ e5t T Fk
Lexma 2

Let g(z) be some arbitrery functional having a1l 1ts pertial derivatives

vhere z is ean arbitrary vector. Let 77 = d/dz. Then Eg(z+n) = Qn(VZ)ﬂ(z).

Proof [22]
Only the cese of scalar z end scalar n will be shown. The vector

case can be extended by & similar procedure. Compute

A (iv) = E AL 7 E[nk (1v)%/x :]

The Taylor series of @(z+n) about z is

Y (a%/x 1) & p(z)/a
k=0

@(z+n)

§ o o gz)/k !

k=0

™7 g(2)

| hence E @(z+n) = !n(VZ) #(z).

A linear differential operetor vill now be defined which describes
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the generel form of Kolmogorov's beckvard equation. Let t = s + b8 > s,
vy = x(8 + b8), G = a fixed Borel set, G C K*. Let P(G,t|X,s) be the
trensition probability function, i.e., Prly € 6|x(s) = X], snd p(y,t|x,s)
be the corresponding density. For a smell time interval (s, s + 8s),
y = x(e + 88) = x(s) + 65X + 0(6s) and hence by equation (26),

#(y) = # (x(s) + &% + 0(8s))

=g (% + £(X,8)88 + 5n + 0(58)). (29)
Since E g(y) = [ - #(y) » (y,t|%,8)ay

Hence by (29), [ _ #(y) p (y,t|x,8)dy = E §(X + £(x,8) 88 + &n +0(5s)).

R (30)
By Lemme 2 and the definition of the disturbance functional F,

E gz + on) = 8 (v,) #(z)

668 P(Q,c,vz,bn) ¢(Z)

1+ 58 F(;,s,vz,Bn) + 0(s8)] @(z).

A A
Let z = x + £(x,s)8s, then (30) becomes

f H,,,os(ar):p(y,t\.:“c,s)dly - T1 + 55 F(x,s,%,0) + 2(88°)] g (x + £(%,8)8s).

But by the Taylor series expension about x,
~ A
B(% + £(%,5)88) = p(R) + B8 2(%,8)" V5 B(x) + o(8s°)

hence

! R,,as(y)p(y,t\.%,s)ay = 9(x) + 8sl2(X,8) Vg + P(X,8,93,60] #(x) + 0(8s)

= () + B8 U(g oy B(Z) + O(8s) (3)

» A
vhere U(g,s) = £(%,s)’ Vs + F(x,s,Vi,Bn)
1s the linear differentisl operetor, f‘(i‘c,s)"?;\t is the system operstor end

F(i,s,vﬁ,ﬁn) is the disturbance operator.
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Theorem 2

If dn = % Bk n where Bk n’s are stetisticelly independent, then
k

= P(X,s)'0a + ~ F(X,s,7
U(Q,s) = f(x,s) Vs + F(x,s, $:8y n).

Proof This is & direct consequence of Lemme 1 &énd the definition of F.
Theorem 3

The Kolmogorov's beckvward egnetion

A P(G:t‘;:s) _ A
- & = U(3 ) P(G,tlx,s)
holds for s f t with terminal conditions

. 1, if y €Ges s = t,
P(G,tl%,s) = {
0, if y G as s = t.

Proof l22]

Let X = x(s) €EHC R and 7 = x(s-8s). Then

P(G,t!z,8-58) = [ p(c,t|%,s) p (X,slz,s-88) ax.

“

By (31), P(G,tlz,s-88) = P(G,tlX,s) - &s U(z,s_ss)r(c,t!:?,s) + o(5s)

or - P(G,t ;,sgs- P(G,t]z,5-58) - U(z,s-ss) P(G,t’;:,s) + Obgza).

Since z = x and 2(5s)/6s = O as bs = 0, hence

2 ng):‘x,S) = U2 ) P(a,tlx,s).

The terminal canditions are satisfied by trivial reesons since in zero
time interval, the probebility of chsnge of state is zero.

Theorem U4

A

) A
Let P = P(G,t'x,s), BxJ = J th component of vector 5x, and



b (;,o) = lim (B 5x bfk) /88. If the disturbence 5n in any smell
Jx 8s <% O J /

time interval 1s statistically independent end geussien distributed with

zere mean, then the Kolmogorov's equation becames a backward diffusion

equation
- A 3P A a2 P

vith the same termina]l conditionms.
Preef

By equation (26),
A

x 3x, (£ 88+ 50, + o(88)Wr 85 + 5o + 0(5s))
—g'l_— - L —L B 8 X x

= fJ 8o + £, BnJ + SnJGnk/Ba + 0(ts)/8s

A
In a smell time interval 6s, £(x,8) 58 is the mesn of 5x (23, p.273],

hence E ¢ 3 Snk =f 3 E 5nk. Therefore

E 8x Jaik/ss £ B, + f, Bn, + Bonbn, /5s + 0(5s)/5s

E SnJSnk/Bs + 0(8s)/3s.
c £1 (%,8) = 1im (E 5%,56%, )/6
onsequently, ka X,8 —53 - x.j x,)/b8

= 1im (E 5n,5n )/56s
Bs = O J "
Since 5n is geussian distributed with zero meen, then

2
iv 6n
.Sn(iv) =Ee

E expl }}:1 (1vy) 8y ]

E{; fe (iv.)sn 1¥/r 1}
5 h o, 1/

1+21th n + %

%% {iv )(1vk) E 5n,5n_ +...
. Wy 37k



1+%2,(1v)(v)E5 5
jk 1 11!].k

But log (1+w)=w-%w2+ 1/3 w - ... for Wl <1

Let lsn(iv) = l+w

Then w=%TLZ% (iv )(1v)E8n5nk+
Jk ,

Therefore log an (iv) =%°¢CZ (1vd)(ivk) E BnJ Sy + ...
Jk

By definition, log §8n(iv) = 68 F(X,s,1iv,5n)

hence, by replacing iv by V;\{ end teke 58 = 0 as & limit,

2
A -}
F(x,s,94,n) = 1im % T T E(5n 5n /6s) Yy
x g5 =0 gk K % 0%
i (%9) 52
= ZLZb,(x,s
sk & &% 3%,
Thus, -~ g——g = U(ﬁ,s)P
= [f(;;,s)'vi + F(i:s;viyan)] P
=Ef (x,s)sw— +i72bjk (x‘,s)s.,._s..._XK
Corollary

Let 5n = T 88. If M-process is a Wiener-Leoy process, then the

~ backward diffusion equation holds.

Proof Since Tl-process hes stationery independent increments, end N(s)
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is gerussian distributed with zero meen, it is equivalent to the condition

that 65n in any smell time intervel 1s stetisticelly independent and gaussian

distributed with zero mean. Hence the proof follows Theorem 4.
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3. THE PURSUIT PROELEM (1]

';'he pursuit problem cen be steted as follows. Let y be the m-dimen-

sionel stete vector of a system defined by

{dy.-'dt = f(y,t,u)

‘¥o) = F
vhere u is the k-dimensionsl contrel vector and £ the m-dimensional
measureble vector with k < m. Let z be the state vectoer of a rendemly
moving point. Given thaet z is a sample function of a Merkev precess

with traensition density

p(C,T‘E,O) = pz('t)‘z(c) (C‘F)

vhere the right side of the equation is the coenditionel prebability density
associated with the event z(t) = { given the event 2(¢) = £ (2(t) end

z(5) are random varisbles while { and * are numbers). It is assumed that
the Markov process 1s continuous with probability 1, and sufficient pertiel
derivatives exist. The problem is to find u which meximizes the probebility

thet

A

1) - f)l<s

)

for a given ¢ > 0 and for some T ¢{0, T] where T is given.

This problem is solved a&s follows. The functional *u(c,t,f) 18 defined

as the probebility thet the randomly moving point is ceptured between times
o end T given that z(0) = ¥, and thet the control function is u. If the
functional 'u were aveilable, it would be streightforward te apply the
meximum principle, end thus solve the problem. The following is &n out-
line of Pontryegin's approximetion to ﬁu(o,f,‘r). |

The first step is to show that tu(c,!‘,r) is a selution to

2
Ay ATY AY
s+ ) b mpme— +) 8 stz 0
A0 R % BE_LEJ oo 1A%,

- i

i,J

subject to.the boundary conditions
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'u('t’ £, 1) =
*u(ci F" T) ' S°=

where Sg = surface defined by § * - y(o)“ = €

F= Z(O),

81(°,n)= 1lim K];' J

(¢,-1,)p(C, o |1, 0-80)ag,
ao-=o 29 Jpeaf<s b1 ’

byyloM = dn g j“ ORI R CLAT .
for 11 & > 9,

r b, j(a,'ﬂ)] is continuous, bounded and positive definite,

ai(o,‘t‘\) = O(exp“ 'ﬂ“) is continuous.
A solution is then obtained in the form, with z(0) = 2,
= m-2 = m-2
tu(o, Z, T) =¢ T(0, Z, T) + ofe )
where m is the dimension of the stete space. For the cese where b1 3 is
independent of g or ¥, I ie given by

r(o, Z, T) = T (0, Z, T) + I,(0, 2, T)

where

r ( )E,) = o
@ T Mar( o)) Tay  Mesl @152V 2

(T'T A) expl-TC-8ry(0)1 T, N C-E4x( Y/ (+. ,)}
s o T (c'rs, ) QB2

¥ Br( sV5T)
£ (0,F,7) = :{ ij B(v,s1¢, 0) \L_{a(s,v) . r[y(s),e-,u]} -——F'-f— av}as
i

ki = eigenVllues of rbij]’
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v (M) a8
)

A=

v, M
as
8 rn-2m)
ts, ) = Iv, 77,

vo(‘n) = elgenfunction satisfying

W) = | = ,,m-§°:19. 3 oM as, (1, W e s)

— -— 2
1/2
(M) - (27 ) /2
8 = a continuous closed surface defined by
T \2 2

@ = angle between the vector p from T to 7 and the normel to S at 1 € S.

4. PROBLEM STATEMENT AND METHOD OF INVESTIGATION

This section states the genersl problem of interest. The method of
investigation and the preperetory computation of transition densitieg zre
also presented.

4.1 Problem Statement

Let the motion of the vehicle be described by & system of differential
equations. It 1s convenlent to normelize the equations as
ax = 2(t,x) dt + B(t) u(t) at + c(t,x) an (33)
x(to) =X
where x is the system state vector; u is the control input vector; n is
& sample vector of a random process; £ is the system-parsmeter vector
which 1s assumed to be differentiable with respect to both t and x almost

everywhere; B and C are matrices with appropriate dimensions. As a rule,
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the dimensions of vectors u end n ere lower then thet of stete vector x.
It is known thet if the disturbences dn in eny two smell consecntive

time intervels ere stetisticelly independent, then the response x to the
system (33) is a Merkov process f22). As shown in Section 2, for Geussien
disturbance An in eny smell time intervel As, the trensition probebility
function P(G,t|y,s) where y = x(8), satisfies the beckwerd diffusion

equation

2P
b, (s,Y) Wy -0 (3+)

17

RS SO D))
1 i

e...[\/\

for t > 8 >0, in vhich *

Z Z Cyx(8,v) Chj(s,v) An_ Bn,
As .

b, .(s,y) = 1lim
R As =D

for e fixed t and & fixed Borel set G.

For the purpose of discussion, essume the system stete is in e

situation such thet the control input u is in Mode 2 of operstion &s

defined in Section 1. Let tu(t,x,to + 'rz) be the probebility of entering
the good performence zone in the finite time intervel rt,to + Tz]. As
outlined in Section 3, Mishchenko [1] showed thet if the stetistics

of the x-process are described by equation (34), then ¢ = tu(t,x, t + Tz)

satisfieg the same equation

2
g—% + Z(f(t,x) + B(t) u(t)}, 5—-! + % \; Z (t,x) 5,2—1;;3 = 0 (37)
i » 13

vith boundary conditions tu(t,i,to + 'rz) = 1 for ell t, end

v (t + T, X, t + 1) =0, vhere || = r, ana | &ll>r

2 o 2 ’ 3 3
The problem is to determine §, which i{s & functionsl dependent on u,

and choose & control u that meximirzes §.



4.2 Method of Investigetion

In order to epply the results of the pursuit.problem (Section 3),
the method of investigetion is ontlined as follows. First of ell, the
system is assumed to be lineer. To be more precise., it is desired to
determine the control vector 1 which meximizes

pr TN x(t) ! < r3] for csome t € rto’ to+ 7]
subject to
¢ dx = TA(t) x + B(t) a(t)dat + ¢ (t,x) an
x(2) = x
where x is sn m dimensionel vector.

A is rnm vy m meesureble matrix,

n is en h < m dimensionel vector.

B is en m bty h meesureble metrix,

n i1s ¢ k < m dimensionel semple vector of & rendom process.

C is en m Ty k meesureble matrix.

T, end X ere given es pert of the protlem.

For this system. :-ompite the trensition densities of the z-process defined

by
{ dz = A(t) z At + ¢ {t,x) an
— (36)
z(2) = x
Next, -~ompate the control vector 1 to meximize
)
Pr rn #(4) - y(t)ﬂ < Ty for some t efto: to 7]
sntject to
Vv o= - t u dt —
[ dy = A(t) y at - B(t) u (37)

y(2) = 0
The method of epproech is motiveted by the edventege of the super-

position property of lineer systems A proper trensletion of the
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zoordinete-system reduces the present problem to Mishchenko-Pontryegin's
piursait problem which is s'umerized in Section 3. Thus., if the statistics
of the 7-process is in zg.eement with the hypotheses for the pursilt
protlem. then the known -esults cen be used to complete the solution.

The -ompitetion of the tisnsition densities of z-process. which is
reqgiired for the evelustion of Pr ”z-y“ < r3], is presented in Section 1.3

4.2 Compatetion of Trensition Densities

Consider the sto:zhe stic' diffe-enticl system
dz = A(t) - at + ¢(t) an
{ (38)
“7(d) =0
vhere 7 is en m dimensionel vector,
A is en m by m meesuieble mrtrix
C is enm by h meesurabhle met:ix,
n is en h dimensionel (L < m) semple vector
of & rendom process with independent end orthogonel increments.
According to Doob (23], the integrel ‘r c(t) dn in the usuel Stieltjes
sense does not exist with prokahility one tecaise the semple functions
of proresses with independent increments ere of untounded variastion with
probebility one. This integrel. however, cen be redefined es ¢ stochesti-
integrel 723] so thet it does exist. Under this definition, the limit

of the sequence of Stieltjes sums exists in & "limit in the mesn" sense.

The solution of system (38) is known es [23]
t
2¢) = [ 8(t, ¥) c(x) an(x) (39)
o

where Q(t, 1) is the m by m continuous metrix setisfying
L #(t, 1) = A(t) B(t, 1)
a‘t_ y T) = 2oL, T),

§(t, 1) = identity metrix
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end the integrel in (39) is e stochestic integrel.

To fecilitate the discussion let

Al
I = JE (M, 7) c(7) an(r)

end

i-1
i
Ien =k§o ¢(M, 7 ) c(t) n(ry,,) - n(7)].
where
T, = N end T, = F,

ere rendom veriebles. The trensition density

(72 -z, ! 71) (49)

p7(1’2) | 7(11) (22 ! zl) B Iiflfz | I 7

where the p's ere defined in Section 3.

The sequence { Iin } ~onverges to IPp in a £.i.m sense es described

by Doob r23]. A giestion erises es to the conditions 1pon which the con-

vergence of p ;i TR in & suitehle sense es 1 = ®. Once the conver-
I =7
lm “ 4
gence is esterlished. then, (4)) implies thet the z-process irensition
densities en te epproximeted Tty the ~onditional densities p 5 ! 5 .
++

7,7, 0, T

1
The investigetion of the convergenc~e prohlem will e defered for the
fatare stady. The compatetion of the conditionsl densities, however.
will be discussed in *he following.

In order to fe-ilitete the disciussion, the prohlem will te reststed
in the following notetion. Let qu be & rendom vertor of dimension m
defined hy

Y, = Q(Tq, T{) C(rk) Tn(x

Xq wrn) - ()] (41)
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end Sqr be & rendom vector defined es

r
S =% Y

qr k=g (42)

q

To express the ronditionel density

P ] (s Is )
S 155, o1 o o0 a-l

in terms of n stetistirs the following two steps ere reqii-ed:

(1) The qu stetistics will te written in terms of n stetistics. end

(2) the desired S distributions will be written in tewms of qu
statistics.
For the first of these two steps, consider the Aimension of the
elements of (L41):

qu is #n m-dimensionel vector.

n(t - n(rk) is en h < m dimensionsl vector,

k+l)
Q(rq, Tk) C(Tk) is enm Ly h metrix, and is sssumed to heve
renk h.

To fecilitete the discussion, let

Ank = n(Tk+1) - n(Tk)

DQk = .(Tq".)c(fk)

Also, superscripts will be used to denote vector elements, e.g. the
1Y clement of Ank is An]i{. Thus (41) becames
From the dimensional considerstions stated esrlier, (43) represents

e mepping of E® into e subsgace, ¥, of E'. The next step is to constrict

n ”
a suiteble "coordinete™ system as follows. Let vlkq’ ce thq be &n
orthonommel besis for §. Let v v be en orthonormel

kg’ *°*? Yhke’ °¢ Vmkq
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besis for E'. Let vhkq be the m by h metrix vhose columns are v v

uq)"" hkq_’

and let vnkq be the m by m metrix whose col'mns are v For

kg’ vnkq'
every Y. qQ’ there is & unique m-dimensionel vector o such that

Y
kq vmkq C'Yk(1

This is true hecense the columns of V form a besis for E°. Moreover,

mkq
since the first h colwmns of mGq form & besis for §, then
a; =O, 1=h+ 1’ L) m’
kq

if qu € ¥. Thus Yk € ¥ is equivalent to

(vt = ‘) “h+1, ..., m (44)

From (44),
-1
A v v (=)
Oy = \ hkq Pk /  'hkq Ykq

vhere ! denotes trenspose. From (44) end (ks)

pykq(Y) PAnk[- hkq Pok) ]V' y 5 (mqu)] i=h+1, ...n

vhere 5 is the Dirac delte. This completes the first of the two steps.

For the compitetion of p, it is noted that the condition-

qr‘so, g-1

ing varieble is ¢ linerr combinetion of those An's which do not appeer in

S _. Since the An's sre independent, hence

qr
%, o1 (B0xl®, 02) - pgqr(sq“)' (46)
From (4€) enda (42),
psqr‘so, q-1 (Sqr"so’ q'l) -
jdsq’ r-1 psq r-1, Yrq (8, r-1.%r = %, r-1) (+7)
» s

Since the An's sre independent.
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foud
'
o
W

oo (s .7) pan O N (48)

Thas (4 ) beromes

| =
Pa | (s _'s . ) =
Sq.r S,), -1 ar 0. 1
ldsq’ r=] le,r‘ (Sqr - Sq, 1"-1) Psq' . (Sq’ _r_l).

By zprlving the seme pro .elire repeetedly. one ohrteines

Pq | (s s
Sqr SD. g-1 @,

g-1

r

ids_opy (s -5 )Ids (s _,-8 )
S A, r-l‘YTq qx A q. r-ZpYr_1. o q, r-1 1. T-2

v Q".

__'[dsgva (s_)

O

vhi “h gives the ceonditionsel AdAensity in terms of qu stetisti-s.

PROBLEM OF ANTENNA POINTING DIRECTION

In the preceding s=ctions, Mishchenko's pirsiit problem end the
relevent sibject were discassed. The results will now be epplied to the
prohlem of entenns pointing direction.

.1 Problem Stetement

As indiceted in Section 4. the motion of the vehicle is smssumed to
e governed by & system of lineer stochesti~ differentiel equetion
ax = TAx + B u(t)) dt + C dn
\ _ (49)
x(0) = x
where x is & 3-dimensionel stste vector; n is £ 3-dimensionsl semple vector

of ¢ rendom process such that the verietion 5n in eny two smell consecutive

time intervels is stetisticslly independent end geussien distributed with



zero meen; u(t) is e control vector with & dimension <3 A, Bend C
are constent metrices with appropriete dimensions. The 3-dimensionel
coordinete system is so chosen thet X, end X, define the entenne

pointing direction end x_, the distence between the spece vehicle end some

3
given reference point. The origin of the coordinete system represents
en equilibrium stete st which the exect pointing direction end the height
of the vehicle is ottsined. The reletion hetween the performence of the
controller for the pointing direction end the pointing engle in the
coordinate system is shown in Figure 7, in which the redii rl. 2 and

‘r, ere given. For convenience, the performsnce of the controller for

3

the vehicle height is defined in s similer wey, 1.e.. |x3| < r3,

Ty < ‘x3‘ < T,y Ty < ‘x3‘ < T and Ty < !xs‘ define the four different
performence regions. Thus Figure 2 is slso e grephical representation
in the 3-dimensionel spece of the performence zones, which ere defined
by the éoncentrical spheres, of the controller.

It is required to synthesize & controller which is cepeble to
verform Modes 1 end 2 of operstion asccording to the stetis of the
3~dimensionsl stete vector x. As indicated before, the problem will be
solved by an epplicetion of Mishchenko's pursuit probvlem rl], vhich is
outlined in Section 3. In order to epply Mishchenko's results, &

reformnletion of the entenne problem is necesseary.

~.2 Reformulation of the Antennsa Problem

Let x = z - y such thet
dz = Az dt + C dn
— (50)
) Z(Q) = X

end

. dy = Ay dt - B u(t) dat

1 | (51)
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then the x-process (49) is divided into two pevrtsA The y-system ylelds

en ordinsry deterministic control prohblem while the z-process is stochasti~.
For the purpose of discussion, the controller is essimed in Mode 2

of operetion. Then the protlem is to find & ~ontrol inpit a1 which mex-

imires the proberility thet 1 x(£)1 = ¥ 2(¢) - y(t)ll< rs for some

te o, T,] given that 2(2) - y(9) = %, x> T
Since, by essumption, 5n in eny two smell consecntive time intervels

is stetisticelly independent end grussian distributed. it is known

f22, 23] thet the z-process 18 Merkovien end its trensition probebility

fanction setisfies the baekwsrd diffusion eqietion

3 3 2
3 2

A ; 3 3

L A R T = S (2)
i=1 i 3=1 k=1 J K

vhere P = Prfz(1)ec!7(3) = #1 for T> g > 9.

G = e fixed Borel set,

t..= 1lim E Y/TC

A pa e s co
3 st a ‘ Ch(‘,- onk ouhﬁu. ( 2)
k h

Pl

S v

Assime thet ell the eigenveliaes of the symmetric roverisnce mat ix
rbiJ] ere positive £nd bounded, and the Merkov process is ‘ontinuois in

the sense thet for £11 5 > 2,

1im 1 [ p(€,alM, s-Ac)ae = 0
As=o Kg “Ng-nll>s

vhere p(F,cy‘T],q - A4) is the trensition density function eas defined in
Section 3. Under these conditions, the resilts of Mishchenko's pursuit
protlem, which is summerized in Section 3 cen he epplied.

€.3 Procedure of Obtainigngrobabiligy Function

Let 'u(a,F,Tz) be the probebility of entering the good performence



zone at some t ¢ [ 3, T2], 0<4g< Tz,' given 2(g) = #. According to g

Mishchenko, 'u also satisfies the backward diffusion equation

2
Ay fal ] oY _
st ) A ek ) Vb =0 (5)
5 i 5 X J k

r = r
I ﬁ{n—. . tu(a, ,TZ) 1 for ¢ ¢ 0, TZ]
3

lim ¢ (s,%,T,) = 0 for Nel> >

G"Tz

3°

Then *u can be obtcined as follows:

(1) Determine the trensition density function of the z-process. In the
present case, the sample vector dn has speclal properties by hypo- !
thesis. 8Since the system is lineer, it is known thet the state vector
z 18 gaussian distributed. As discussed in Section 5.2, the hypothe-

tical conditions on the n-process in the present also lead to the

conclusion thet the z-process is Markovian. Thus the transition

density of z-process cen be written &s

&

Celro) L A 'N(C-w) (559
plC,Ti%,0) = €

(2x)3/2(aetlQly}/?
where € = z(7), € = z(0), T> ¢

p = Bleled = Efz(1)!2(0)] = &(7,9)z(9),

8(71,08) = 3 by 3 matrix satisfying
d #(t,0)/dt = A 8(71,0) and ¥g,0) = I,
R

Q= | ¥w,t)cw c’ &(x,t)’ at,
g

’
We 1im E(6n)(on)"

st =0  OF
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Note thet es O = T, Q approaches C W C’ which is equal to 5t[b13],

where b1J is defined by equation (53).

(2) Determine the eigenvalues Xl, )\2, end 13 for the 3 by 3 symmetric
positive definite coverlence matrix [bij]. These eigenvalues are

required for the determinztion of the ellipsoid
\3_
2 2
11 Wi = 1'3 ’ ‘ (56)
i=1

3
where W, = Y Mij 33/ /Ay , vhich is a mapping of the sphere
J=1

S < 2

= : 2 A 2 =

1 r when ) ° bij tu/ §i 13 j 0 is transformed into
i=1 13

the Leplace equation Y >2¢u/>w12 = 0. Here M is a rotetion matrix
i

vhose i-th column 1s the orthonormalized eigenvector associated with

\,.
e

(3) Determine the eigenfunction vo(i)satisrying

| W#)- o js ﬁ w(5) as (57)

where 8 = closed surface of the ellipsoid defined by equation (56),

W, ¥ = any points on S,

p(#,%) = distance between two points ¥ and W.

6 = angle between the vector p from ¥ to ¥ and the outward normal to

8 at w.

This is 2 Fredholm equation of the second kind. No analytical solution

18 xnown. To determine W¥) numerically, the surface integral must be




(¥)

(s)

expressed as ordinary double integrals. From quntion (56), the

ellipsoid can be written as

vy=t Jryo- ‘1"12 - Ay, (s8)

Then, equation (57) can be reduced to

cos 8 - 2 ] a oA

W#) =+ 5= I.[D 22(5.9) ¥y +(""3> . (“'f) dw, aw,

(59)
where the sign is determined by the projection of the outward normal

to 8 at 3 onto the w3-axis, and D is the projection of 8 onto (wl,wz)-
plene. It is known (1, 24] that there exists a unique eigenfunction
which satisfies (57), and hence (59). Thus a numericel solution of

VW¥) gives the desired vo(ﬁ).

Determine the ccnstant a fram the fomula

v (w)
a= v (w) dS/[ ( ) as (60)

where r{%) 1s the distance from ¥ to the origin. For the’purpose of
numericael evaluation, equation (60) is written in terms of ordinary

double integrals:

» - .2 AW, 2
+] IRAL) e (s;i) + (wf) aw d,
a =
. v (%) - AW 2 W, 2
- '”D :(‘v?) /1 +< "1> CS“%) "1 %

Determine the system probability function I’o(d, §,7) from the formila
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a“/ A

. A A
ro(c’g’T) } a ) g 123 8 ac
[res@rTo ev@1 ™ txe0) /2 2rg, e

(C-€+y(0)1 B, ;) -Evy(0)] i
&= - 2(%-0) (61)

for 0 € 0 < T wvwhere

3
C

z(0) as defined before,
z(t)

Ta;,1 = Iog 17,

R = 3-dimensionel Buclideazn spcce,
()’ = transpose of ().
(6) Determine the pzrtial derivetives
T (3,£,7) o
Ui

fram equation (61).

(7) Determine the controlled probability function

T Al (s,v,1)
re g = [ { ] v dealavartana=)]’ —5—— arjas (63)
vhere v = z(s) for selo,1],
y(s) = state vector satisfylng equation (51),
u(s) = control vector appearing in equation (51),
rb(s,v,T) = system probability function defined by equetion (61),
p{v,s|€,0) = trensition density given in equation (55).
(8) Determine the desired probebility function for Iﬁde 2 of operation:

¥,(0,8,%,) = r.(r (0,8,%,) + I (0,8,1,)] + o(r,) | (64)

vwhere tu(a,t,Tz) was defined in Section 5.3,



0(r3) is such that 1lim 0(r3)/r -0, ¢ = x(0).
. r. -0 3 -

3
Thus equation (6k) gives an approximete solution for the backward
diffusion equation (54) within an error of the order of r

S.4 The optimal Control

3.

Once the probability function tu(c,g,'l'a) is available, the optimization
of the control vector u can be achieved by an application of the maximel
principle 1, Chap. I]. Since I‘o(a, !,Tz) does not depend on u and Ty is
a positive comstant, then from equation (64),

mx % (0, %, T,)= mex T(0, %, T)
ucnu’,aucﬂl’,z

where x = x(0) = z(0),
) = a restraint set with Q C A,
A = cless of admissible controls.
The maximization process is subJect to the constraint of the determin-

istic system (51). Let

(t) = _ft [ 1 tv.s!E.0)av-avis) + Bule))’ o dv} ds
yO ) Jo 1 JRP\V)'”*:VIL“'“"J\-: DULB2 2 ﬁ J
ar ar (s,v,T,)
vhere : = :” e,
‘ - af,
then y, = - P(y,t) - TB u(t)] JRp(v,t‘x,O) T &
_ ar
where y,t) = | pv,tI%,0)lav-Ax(t))" 52 av (65)
R \

The Hamiltonien is
_ar
H = F(y,t) + [B u(t)]’ FRp(v,ﬂx,o) = av + g(+)Tax(t) - U

vhere @(t) 1s an 2djoint vector associated with the deterministic system (51).
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For the system with fixed terminal time and free end point, it is known
that ¢('r2) = 0 from the tronsverselity condition [1]. The adjoint vector
rlays an important role in the optimel control theory and hence it must
be determined. With yo(f)) = 0, y(0) = g('rz) = 0 and go('rz) = -1, #(t)
can be obtained by solving the two-point boundary value problem. A
great variety of computcationel schemes have been proposed for solving
this type of problems with various classes of performence indices (the
functionel to be either moximized or minimized) and different ). Most
recent text books on the relevant subject ere those by Fel' Dbaum [25],
by Athans and Falb 26], and by Lee and Markus [27].

Two different cases of optimal controls are considered as follows:
(1) 120 ¢ |u1(t)‘ <1, i=1, ..., k for k < 3, then from equation (19),

max H can be achieved if

- or
o (8) = - ogn {3'0(8) - | o(v,tl0) g7 el ) (67)

for t ¢ 10, T2] vhere

14if x> 0,
sgn x = {
-1 if x< 0,
and u¥(t) is an optimel controller which yields max vu(o, x, '1'2).

However, when

or
B'Tg(t) - J' P ﬁ dv] = 0 on some subinterval of 70, '1‘2], ut{ t)
R

is not defined and a singuler control problem results. In equation
(63), the formula for I‘l, the integrand contains a lineer term of u.
Singular solutions in this type of problems were discussed by various
authors (28, 29].



Y

(2) If 0« A and if control energy It' u’ U u dt, vhere Uig a k by k
o

positive definite matrix with k € 3, must be minimized simultene-
ously, then the Hamiltonian is formed as H = K + u’ U u where H is

defined by equation (66). Thus 4 ;/dt = 0 ylelds
1 _ ar
at(t) = TU + 0’1" B/ g(t) » I v, t]x,0) S‘% av ] (68)
R .

for t ¢f0, Tz], vhere u#{t) is an optimel controller which yields

- TZ '
max Hu(o, x, T,) - J‘ u’ U uatl.
o

6. CONCLUSIONS

The analysis presented in this report leads to & scheme of synthe-
slzing the optimal controller for the antenna pointing direction and the
height of the space vehicle subject to random disturbence. The analysis
is an application of Mishchenko's pursuit problem. The computationsl
formulas which are required for the syanthesis are presented. Digital
computer progrems and their flow charts for the evaluation of double
integrals and eigenfunctions satisfying the Fredholm equation of the

second kind are included in the Appendix.

7. FYLAN OF FNUTURE WORK

The immediate step will be a simuletion study of the antenna pointing
system on a digital computer with some data package related to existing
vehicles. The convergence problem of the camputational scheme will also
be investigated.

Problems of time-varying systems with state-~dependent noise will

also be studied. The camputetion for these systems is an extension of the
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results in this report but is much more involved.

The extension of the method to higher order systems, especially those
in vhich the terget manifold has & dimension less than that of the system
manifold [30), will be examined closely. Attention will be focused on
any hidden pitfalls. Once this 1s completed, numericel deta for & physical
space vehicle will be used as & test model for the computational method.

. A camparison of the results so obtained ageinst those from existing
control systems 1s also planned.

The future theoretical studies include the following items:

_ (1) The sufficiency :onc'ﬁtion on the noise thet guerantees the response
of the dynemicsl system belng Markovian and satisfying the hypothesis
of the pursuit problem will be determined.

(2) The convergence of sequence [pIi } , which was discussed briefly in
4

Section 4.3, will be established regorously.
(3) Along the seme line, an error estimete for

pl - Py will be developed.
Ten o TEN

(4) Methods of evaluating (m-1)-dimensionel surface integrals will be

investigated by means of the tensor analysis.

9. APPREDIX-NUMERICAL EVALUATION OF SURFACE INTEGRALS

In the following, & numerical method for the evaluation of surface
integrels in the 3-dimensionsl phase-coordinate system is presented. The
method is developed for the evaluation of equation (60), Section 5.3,

.U "o(g",1 + (gf- >T‘ (:g_ )r &) o,

o= : (69)

v (¥) U
+ fI J1+ Wi)z {w:> av, av,




where ¥ € 8,
8 18 the surface defined by
2 2

2 2
llwl + 12w2 + l3w3 =Ty 7 (70)

D 1s the projection of S onto the (wl,vz)-plane,

ORI AR AR A A (12)

vo(ﬁ) is the eigenfunction satisfying

w%) 1 r v(®@) P(":V) . dS(;l)

- (12)
2 o A o
x S ‘ p(":“)“ 3
in vwhich % and ¥ € S,
p=w-%, (a distance vector) (73)

as(w) is the surface element vector with & direction pointing
outwerd at w € 8.

It is known thzt

as(w) = (2, a5, 1) dﬁl d?vz (%)
where
(5 /Ag ) ¥
8, = s
1N r32 - )‘1"1 - A "22>/ A J ) | (75)
1=1,2.

Combine equations (79), und (73) through (75), equetion (72) may be

written 2s a double integral

\a(ﬁl = Jl { r (wl,wz,vl,u )v(vl,w Yaw } dw (76)

vhere p = !‘:(r32 - klﬁlz)/kz]l/z , (1)




: 3/z
[(@l -G+ By - 9084 (B - ﬁ3)2}

A numeri~cl nethod for the camputation of the eigenfunction
vo(?q'l,?-iz) associzted with equation (76) is as follows:

(2) Discretizetion of ﬁl" ‘.’2’ 711, end ¥

o

o
I
|

= —r3//_)5.+( i-l)ij ,

~1
.= =T /d A, (i-1)Av,
w r}/ l.] (1 ) ‘J,
for i=1,2, ..., M, =nd 3=1,2, vhere
s, =[2/(M-1) /X ). .
Rl C(CRIVWES

(b) Discretirition of F znd V.

. JXhi; ok ah il
Let F = F(w1 s Vg W7, W, )
vid o v(ﬁll, 7.Y)

M-1 hi(k)
ViJ:AwAu v V l'khi'j \’kh
1z _. o~
k=1 h=h (k)

vhere

h'(k) = 1+ !%l {1 "le [1 - %1.<f1 + 2n:§ }’

]

nf(x)

M-1 1 2k-2 V2 |
1+ {1 +',‘2 [1 X <}1 * N1/ }.

(c) Rearrengement of V-9

(78)

(79)

(82)

(81)

(82)

(83)

(84)

(85)

(86)

The following 1s a rearrengement of the two-dimensional arrey viJ

S




(a)

into the one-dimensional array VP 80 that 1t cen be computed as

an eigenvector:
St vl,h.(l)

L]
<2 - JIoh (1) +1

(D) - 07 + 1 _ 1,6

-\-,hf(l) -n'(Q) +2 _ 2,0%(2)

-\;hf(l) + nf(2) - n°(2) - n'°(2) + 2 . vz,hf(z)

39.2+Lh(a+1)+s-1

q
where Q = Y [hf(i) - h°(1)]+q+s; q=0,1,...,M-2; 1<s< hf(q+l)-h°(q+1)+l-
) i=1
1 .= P g
Thus the mapping V'Y = Vv © 1s defined by (1,j) = p with

g:p= —f [hf(a) - h'(s)] +1+3-10"(1) (87)

B=1
-1

4
The inverse mepping p = (1,3) is given by the algorithm represented

by the flow chert in Figure 8. Under the mapping g, equation (84)

becames
q Y
v - Z cgiB8v8 (88)
=1
where
g
(1,3) = ¢ (89)

(k) = 8 | (90)



q=2
|
M-gq
= pT'.le[hf(B)-ho(B)J+H-q
p>p‘1'? Yes
No i=M-qg+1
qQ=q+1 Yo P=DPp? *
Yes o
J'h(“-q'&l)i-p-pr-l
i=M-gq
3=1nf(M-q)

Py © Prest,

FIGURE 8




(e)

(£)

o% P . pibiJ bv, Av, | » (91)
N1

Y- 7 [h’(e) - h'(e):\ +MN-1 (92)
B=1 :

Thus the eigenvector [T’oq] assoclated with the matrix [Gq 5] represents

a discrete approximstion to the eigenfunction VO(G , 32). _
The eigenvector mentioned above can be obtained as follows. A prime
consideration in the selection of an algorithm for this task 1is the
dimensionslity of the matrix [G“ 5]. The total number of elements of
the matrix is (M-l)h. Thus, if the w,, w, exes are discretized into
20 segments, the matrix contains 160,000 elements. This makes it
imprectical to attempt the storage of the metrix. For this reeson,
the elements will be computed as they are needed, using the inverse
mepping with the explicit expressions for gl B given by (91) with
associated equations (79) through (990).

The computationsl algorithm is based on an iterative technique for
determining the maximum eigenvalue and associated eigenvector of &
given matrix [31]. Figure 9 shows a flow chart which describes

the aslgorithm. After the execution of the iteretive cycle four
times, the computed data are checked against a gpecified accurecy require-
ment ( ACC ). If the requirement is met, the process is terminated.
Othérwiae the process enters another lterative cycle. The process is
also temminated if the required accurscy has not been attained after
e predetermined number of iterations ( LSTOP ).

The above describes the procedure of determining \'1‘1. The computation

of a given by equetion (69) is straightforward. By a similar procedure,

(69) can be discretized s

—



M-1
7=:4__; m(8) - °(B)] + M- 1

<7 b=b+1

<7 ilp=p +1

——]



b g

l(—l h (k)
ol
o h-l h-h “(x) (93)
M1 B (x)
V z \’kh / 'lk,‘.zhy; )
kel beh *(x)
vhere
2 kK~h 2
E- 1+ [o)(555,8]+ [, 55 D], (94)
N PR WU, W (95)

Figure 10 shows a flow chert which describes the algorithm for com-

puting a by equation (93).



NUK =0
v
DEX = 0O

!

Compute h°(k) and K (k),

k=1,..., M- 1, from eqs. (85) & (86).

83

|
-1
Compute
k=]
h = h%(k) jea
t
- Compute 71k, 2h, & v5
fhee—
from eqs. (80) & (95),

(x,n) —&» 1
i

A=v /l*‘[l(‘;k:'h)]z*[. l)')]z

+

NUM = NUK + A

!

Xk ~h ~
DEN = DEN + & / (v, 2""5)

h=h+1

k=k +1
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